Math, asked by krish757846, 11 months ago

find a quadratic polynomial having zeros 2+7√3​

Answers

Answered by Anonymous
2

 \large\bf\underline{Given:-}

  • Zeroes of required polynomial = 2 +7√3

 \large\bf\underline {To \: find:-}

  • quadratic polynomial

 \huge\bf\underline{Solution:-}

One zero of required polynomial = 2+7√3

Then the other zero is 2 -7√3

Let α and β are the zeroes of required polynomial.

➝ α + β = 2 + 7√3 + 2 -7√3

➝ α + β = 4

➝ αβ = (2+7√3) × (2 -7√3)

➝ αβ = 4 - 147

➝ αβ = -143

Formula for quadratic polynomial:-

  \bf \:  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta

➝ x² -(4)x - 143

➝ x² - 4x - 143

So, the quadratic polynomial is x² - 4x - 143

 \underline{ \bf \: verification :  - }

  • p(x) = x² - 4x - 143
  • a = 1
  • b = -4
  • c = -143

Sum of zeroes = -b/a

➝ 4 = -(-4)/1

➝ 4 = 4

Product of zeroes = c/a

➝ -143 = -143/1

➝ -143 = -143

LHS = RHS

Hence Verified

Answered by Anonymous
13

Solution

1 root of required polynomial. = 2+7√3

Other root = 2-7√3

So,

 \alpha \: and \:   \beta

↑Are the root of the polynomial.↑

Sum of the zeroes↓

\rule{300}2

\alpha+\beta=2+7\sqrt3+2-7\sqrt3 \\ \alpha+\beta=4\\

product of the zeroes↓

\alpha\beta=( 2+7\sqrt3)(2-7\sqrt3)\\ \alpha\beta=143

Therefore,

required polynomial is ↓

x^2-(4)x+143\\ \leadsto x^2-4x+143

\rule{150}2

Hence,

\leadsto x^2-4x+143 (is the required polynomial..)

Similar questions