Math, asked by 7667629407nitish, 1 year ago

Find a quadratic polynomial having zeros as-3 by alpha and 2 by alpha

Answers

Answered by ihrishi
1

Step-by-step explanation:

Sum  \: of  \: zeros =  \frac{ - 3}{ \alpha }  + \frac{ 2}{ \alpha }  = \frac{ - 1}{ \alpha }  \\ Product \:  of  \: zeros  = \frac{ - 3}{ \alpha }   \times  \frac{ 2}{ \alpha } =  \frac{ - 6}{ { \alpha }^{2} }  \\ required \: quadratic \: polynomial \\ is \: given \: as\colon \\  {x}^{2}  - (Sum  \: of  \: zeros)x + Product \:  of  \: zeros \\  =  {x}^{2}  - ( \frac{ - 1}{ \alpha } )x + ( \frac{ - 6}{ { \alpha }^{2} } ) \\ =   {x}^{2}  +  \frac{x}{ \alpha }  -  \frac{6}{ { \alpha }^{2} }  \\  =  { \alpha }^{2}  {x}^{2}  +  \alpha x - 6

Answered by SuratSat
0

Answer:

here is your answer

x²+x/alpha-6/alpha²

Step-by-step explanation:

the zeroes given

-3/alpha and 2/ alpha

since x should be equal to either 3/alpha or 2/ alpha

let the factors of polynomial

(x+3/alpha) (x-2/alpha)

x²-2x/alpha+3x/alpha-6/alpha²

x²+x/alpha-6/alpha²

hence the quadratic eqn which we need is x²+x/alpha-6/alpha²

hope it helped u

hope it helped u pls mark me brainliest

Similar questions