Math, asked by kamali2006pdy, 4 hours ago

Find a quadratic polynomial if sum and product of its zeroes are 2√3 and 2 respectively.

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

Sum and product of zeroes of quadratic polynomial are 2√3 and 2.

Let assume that

f(x) be the required quadratic polynomial

and

\rm \:  \alpha , \:  \beta  \: be \: the \: zeroes \: of \: quadratic \: polynomial \: f(x)

So, it is given that,

\rm \:  \alpha  +  \beta  = 2 \sqrt{3}  \\

and

\rm \:  \alpha \beta  = 2  \\

Now, the required Quadratic polynomial is given by

\rm \: f(x) = k\bigg( {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \beta\bigg)  \: where \: k \:  \ne \: 0 \\

So, on substituting the values, we get

\rm \: f(x) = k\bigg( {x}^{2} - 2 \sqrt{3} x +  2\bigg)  \: where \: k \:  \ne \: 0 \\

Hence,

The required Quadratic polynomial is

\boxed{\sf{  \:\rm \: f(x) = k\bigg( {x}^{2} - 2 \sqrt{3} x +  2\bigg)  \: where \: k \:  \ne \: 0 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

For Cubic Polynomial

{ \rm\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha   + \beta  +  \gamma  =  - \dfrac{b}{a}}} \\

\boxed{ \bf{ \:  \alpha  \beta   + \beta  \gamma  +  \gamma  \alpha  =  \dfrac{c}{a}}} \\

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}} \\

For Quadratic polynomial

{\rm \: \alpha , \beta  \: are \: zeroes \: of \: a {x}^{2}  + b x + c, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta    =  - \dfrac{b}{a}}} \\

\boxed{ \bf{ \:  \alpha \: \beta    =  \dfrac{c}{a}}} \\

Similar questions