Math, asked by bala2806, 1 month ago

find a quadratic polynomial if the sum and product of zeroes are 2√3 and 2


Dont answer if u dont know plz​

Answers

Answered by Anonymous
28

Answer:

Given :-

  • The sum and product of zeroes are 2√3 and 2.

To Find :-

  • What is the quadratic polynomial.

Formula Used :-

\clubsuit Quadratic Equation Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots)}}}

Solution :-

Given :

\bigstar\: \: \bf Sum\: of\: roots\: (\alpha + \beta) =\: 2\sqrt{3}

\bigstar\: \: \bf Product\: of\: roots\: (\alpha\beta) =\: 2

According to the question by using the formula we get,

\footnotesize\mapsto \sf\bold{\green{x^2 - (Sum\: of\: roots)x + (Product\: of\: roots)}}

\footnotesize\longrightarrow \sf\bold{\purple{x^2 - (\alpha + \beta)x + (\alpha\beta)}}

\longrightarrow \sf x^2 - (2\sqrt{3})x + 2

\longrightarrow \sf\bold{\red{x^2 - 2\sqrt{3}x + 2}}

{\small{\bold{\underline{\therefore\: The\: required\: quadratic\: polynomial\: is\: x^2 - 2\sqrt{3}x + 2\: .}}}}

Answered by Anonymous
7

Given :-

  • The sum of zeroes of the polynomial = 2√3
  • The product of zeroes of the polynomial = 2

To Find :-

  • The quadratic polynomial?

Solution

( \alpha  +  \beta ) = 2 \sqrt{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(Given)

 (\alpha  \beta ) = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \:      ...(Given)

For finding the quadratic equations, we use

\footnotesize\red{{x}^{2}-(Sum \: of \: roots)x+(Product \: of \: roots)}

 \longrightarrow \:  {x}^{2}  - ( \alpha  +  \beta )x + ( \alpha  \beta )

 \longrightarrow \:  {x}^{2}  - (2 \sqrt{3})x + 2

 \longrightarrow \:  {x}^{2}  - 2 \sqrt{3} x \:  + 2

 \therefore \: The \: required \: polynomial \: is \\  {x}^{2}  - 2 \sqrt{3} x \:  + 2 \:  \:  \:  \:  \:  \:  \:

Similar questions