Find a quadratic polynomial, the sum and product of whose zeroes are 3/2 and -2/5.
Answers
Therefore , 10x² - 11x - 6 = 0 is the required quadratic polynomial
Step-by-step explanation:
\large{\bold{ \underline{ \underline{ \: \: Given \: \: \: \: }}}}
Given
\bold{Sum \: of \: the \: zeroes \: (α )= \frac{3}{2} }Sumofthezeroes(α)=
2
3
\bold{Product \: of \: the \: zeroes \: ( β ) = \frac{ - 2}{5} }Productofthezeroes(β)=
5
−2
\large{\bold{ \underline{ \underline{ \: \: \:Answer \: \: \: }}}}
Answer
\begin{gathered}\to \bold{ 10 {x}^{2} - 11x - 6} \: = 0 \\\end{gathered}
→10x
2
−11x−6=0
\large{\bold{ \underline{ \underline{ \: \: Explanation \: \: \: }}}}
Explanation
\bold{ \underline{We \: know \: that , \: \: \: }}
Weknowthat,
\begin{gathered}\large\fbox{ \fbox{\bold{Quadratic \: polynomial = x - ( \bold{ α + β }) x + αβ \: = 0}}} \\\end{gathered}
\begin{gathered}\to \bold{Required \: quadratic \: polynomial = {x}^{2} - ( \frac{3}{2} + ( - \frac{2}{5} )) + ( \frac{3}{2}( \frac{ - 2}{5} ) ) = 0} \\ \\ \to \bold{Required \: quadratic \: polynomial = {x}^{2} - ( \frac{3}{2} - \frac{2}{5} ) - \frac{6}{10} = 0 } \\ \\ \to \bold{Required \: quadratic \: polynomial = {x}^{2} - ( \frac{15 - 4}{10} )x - \frac{6}{10} = 0} \\ \\ \to \bold{Required \: quadratic \: polynomial = 10 {x}^{2} - 11x - 6 = 0} \\\end{gathered}
→Requiredquadraticpolynomial=x
2
−(
2
3
+(−
5
2
))+(
2
3
(
5
−2
))=0
→Requiredquadraticpolynomial=x
2
−(
2
3
−
5
2
)−
10
6
=0
→Requiredquadraticpolynomial=x
2
−(
10
15−4
)x−
10
6
=0
→Requiredquadraticpolynomial=10x
2
−11x−6=0
Therefore , 10x² - 11x - 6 = 0 is the required quadratic polynomial