Math, asked by vaibhav362, 1 year ago

find a quadratic polynomial whose one zero is 7 and sum of zeros is zero

Answers

Answered by Panzer786
26
Hii friend,

Let Alpha =7

Sum of zeros = (Alpha+Beta)

0 = 7+Beta

Beta =0-7

Beta = -7

Sum of zeros = 0

Product of zeros = Alpha × Beta = 7×-7 = -14

Therefore,

QUADRATIC POLYNOMIAL =X²-(Alpha+Beta)X + Alpha × Beta

=> X²-(0)X+(-14)

=>X²-14


HOPE IT WILL HELP YOU...... :-)
Answered by BrPiYuSHGuPtA
1

Answer:

\huge{\pink{\boxed{\green{\sf{QUADRATIC=x^{2}-49}}}}}

Step-by-step explanation:

\huge{\pink{\boxed{\green{\underline{\red{\sf{SOLUTION-}}}}}}}

 \:  \:  { \orange{given}} \\ { \pink{ \boxed{ \green{ \alpha  = 7}}}} \\ { \pink{ \boxed{ \green{ \alpha +  \beta  = 0}}}}  \\  \\ { \blue{to \: find}} \\ { \purple{ \boxed{ \red{ quadratic \: polynomial =? }}}}

According to given question:

 \to  \alpha  +  \beta  = 0 \\  \to 7 +  \beta  = 0 \\  \to  \beta  =  - 7 \\  \\ for \: quadratic \\   \to( x -  \alpha )(x -  \beta ) \\  \to (x - 7)(x  - ( - 7) ) \\  \to (x - 7)(x + 7) \\   \to  {x}^{2}  + 7x  - 7x - 49 \\  \to  {x}^{2}  - 49 \\  \\  { \pink{ \boxed{ \green{ \therefore quadratic =  {x}^{2} - 49 }}}}

_________________________________________

Similar questions