Math, asked by jaskirtsinghh, 2 months ago

find a quadratic polynomial whose zeroes are -3+/3, -3-/3​

Answers

Answered by vipinkumar212003
0

Answer:

let \:  \alpha  =   - 3 + \frac{1}{3}  =  \frac{ - 8}{3}  \\  \beta  =  - 3 -  \frac{1}{3}  =  \frac{ - 10}{3}  \\ using \: quadrataic \: formula \:  :  \\  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  \\ {x}^{2}  - (  \frac{ - 8}{3}   +  ( \frac{ - 10}{3}  ))x +    \frac{ - 8}{3}  \times ( \frac{ - 10}{3} ) \\  {x}^{2}  - ( \frac{ - 8 - 10}{3})x  +  \frac{80}{9}  \\  {x}^{2}  +  \frac{18}{3} x +  \frac{80}{9}  \\ you \: can \: put \: it \: equal \: to \: 0  \: to \: get \: it \:  \\ in \:   non \: fractional \: form : \\ {x}^{2}  +  \frac{18}{3} x +  \frac{80}{9} = 0 \\  \frac{9 {x}^{2}  + 54x + 80}{9}  = 0 \\ 9 {x}^{2}  + 54x + 80 = 0

Step-by-step explanation:

HOPE THIS HELPS YOU

MARK ME BRAINLIEST

Similar questions