find a quadratic polynomial whose zeroes are 5-3√2 and 5+3√2
Answers
Answer:
Answer:
Givenzeroesare:−
\small\bold{5 + 3 \sqrt{2} \: and \: 5 - 3 \sqrt{2} }5+3
2
and5−3
2
\small\bold{Sum \: of \: the \: zeroes :}Sumofthezeroes:
\small\bold{5+3\sqrt{2} + 5 - 3\sqrt{2}}5+3
2
+5−3
2
\small\bold{ = 10}=10
\small\bold{Product \: of \: the \: zeroes :}Productofthezeroes:
\small\bold{(5+3 \sqrt{2)} \:(5-3\sqrt{2)}}(5+3
2)
(5−3
2)
\small\bold{5² - (3\sqrt{2})²}5²−(3
2
)²
\small\bold{ 25 - 18 }25−18
\small\bold{ → 7}→7
\small\bold{ The \: required \: quadratic \: polynomial \: is }Therequiredquadraticpolynomialis
\small\bold{x² - ( sum \: of \: the \: zeroes)x + product \: of \: the \: zeroes}x²−(sumofthezeroes)x+productofthezeroes
\small\bold{Answer → x² - 10x + 7}Answer→x²−10x+7
Step-by-step explanation:
Mark me as brainliest answer