Math, asked by omshivam86, 6 months ago

find a quadratic polynomial whose zeroes are 5-3√2 and 5+3√2​

Answers

Answered by sk181231
15

Answer:

\bold\red{ † Answer † }

\small\bold{Given \: zeroes \: are :- }

\small\bold{5 + 3 \sqrt{2}  \: and \: 5 - 3 \sqrt{2} }

\small\bold{Sum \: of \: the \: zeroes :}

\small\bold{5+3\sqrt{2} + 5 - 3\sqrt{2}}

\small\bold{ = 10}

\small\bold{Product \: of \: the \: zeroes :}

\small\bold{(5+3 \sqrt{2)} \:(5-3\sqrt{2)}}

\small\bold{5²  - (3\sqrt{2})²}

\small\bold{ 25 - 18 }

\small\bold{ → 7}

\small\bold{ The \: required \: quadratic \: polynomial \: is }

\small\bold{x² - ( sum \: of \: the \: zeroes)x + product \: of \: the \: zeroes}

\small\bold{Answer → x² - 10x + 7}

Answered by Anonymous
2

Answer:

Givenzeroesare:−

\small\bold{5 + 3 \sqrt{2} \: and \: 5 - 3 \sqrt{2} }5+3

2

and5−3

2

\small\bold{Sum \: of \: the \: zeroes :}Sumofthezeroes:

\small\bold{5+3\sqrt{2} + 5 - 3\sqrt{2}}5+3

2

+5−3

2

\small\bold{ = 10}=10

\small\bold{Product \: of \: the \: zeroes :}Productofthezeroes:

\small\bold{(5+3 \sqrt{2)} \:(5-3\sqrt{2)}}(5+3

2)

(5−3

2)

\small\bold{5² - (3\sqrt{2})²}5²−(3

2

\small\bold{ 25 - 18 }25−18

\small\bold{ → 7}→7

\small\bold{ The \: required \: quadratic \: polynomial \: is }Therequiredquadraticpolynomialis

\small\bold{x² - ( sum \: of \: the \: zeroes)x + product \: of \: the \: zeroes}x²−(sumofthezeroes)x+productofthezeroes

\small\bold{Answer → x² - 10x + 7}Answer→x²−10x+7

Step-by-step explanation:

Mark me as brainliest answer

Similar questions