Math, asked by viumin, 3 months ago

find a quadratic polynomial whose zeroes are given below: 2/3,-5/7​

Answers

Answered by tajenderkaur3012
2

Answer:

hope it helps

Step-by-step explanation:

thanks my answer and mark me as brainlist

Attachments:

sandruwahlang123: give your best next time
tajenderkaur3012: I don't want advice
viumin: lol
Answered by Sen0rita
28

☯︎ Given that

  • Zeroes of a quadratic polynomial are given as 2/3 and -5/7.

_______________________

\sf\underline{Firstly, \:we'll \: find \: the \: sum \: of \: zeroes}

\boxed{\boxed{\sf\purple{\bigstar \: Sum \: of \: zeroes \:}}}

\sf\implies \: Sum \: of \: zeroes \:  = \dfrac{2}{3}  + ( - \dfrac{5}{7} )

\sf\implies \: Sum \: of \: zeroes \:  = \dfrac{14 + ( - 15)}{21}

\sf\implies \:  Sum \: of \: zeroes \:  = \dfrac{14 - 15}{21}

\sf\implies \:  Sum \: of \: zeroes \:  =  \boxed{\boxed{\sf\purple{ \dfrac{ - 1}{21} }}}\bigstar

\sf\underline{Now, \: we'll \: find \: the \: product \: of \: zeroes}

\boxed{\boxed{\sf\purple{\bigstar \: Product \: of \: zeroes \:}}}

\sf\implies \: product \: of \: zeroes \:  =  \dfrac{2}{3}  \times   (\dfrac{ - 5)}{7}

\sf\implies \: product \: of \: zeroes \:  =  \dfrac{2 \times ( - 5)}{21}

\sf\implies \: product \: of \: zeroes \:  =  \boxed{\boxed{\sf\purple{ \dfrac{ - 10}{21} }}} \bigstar

\sf\underline{As \: we \: know \: that : }

\boxed{\boxed{\sf\purple{quadratic \: polynomial \:  =  {x}^{2}  - (sum \: of \: zeroes)x + product \: of \: zeroes}}}

\sf\underline{Put \: the \: values:}

\sf\implies \: quadratic \: polynomial \:  =  {x}^{2}  -  (\dfrac{ - 1}{21})x    +  (\dfrac{ - 10}{21} )

\sf\implies \: quadratic \: polynomial \:  =  {x}^{2}   +  \dfrac{x}{21}    -  \dfrac{10}{21}

\sf\underline{Multiply \: throughout \: by \: 21}

\sf\implies \: quadratic \: polynomial \:  = 21(  {x}^{2}  +  \dfrac{x}{21}  -  \dfrac{10}{21} )

\sf\implies \: quadratic \: polynomial \:  =  \boxed{\boxed{\sf\purple{21 {x}^{2}  +  x - 10 }}} \bigstar

\sf{Hence,}

  • \sf\underline{The \: quadratic \: polynomial \: is \:  \bold{ 21{x}^{2}  + x - 10}}

atharva258691: spectid(✷‿✷)
Anonymous: khatarnaak
Sen0rita: thanku thanku ❤️ :D
viumin: thanks a lot
Sizzllngbabe: well explained and nice presentation:D
Sen0rita: thanks :D ❤️
atharva258691: wonderful in ful ful xD
Sen0rita: xD
atharva258691: ..xD
Sen0rita: (⌐■-■)
Similar questions