Math, asked by Anonymous, 3 months ago

Find a quadratic polynomial whose zeroes are reciprocals of the zeroes of the
polynomial f(x) = ax2 +bx+c, a ≠0,c≠0.​

Answers

Answered by dhadisrinivas218
3

Answer:

let \:  \alpha  \:  \:  \:  \beta  \: are \: the \: zeros \\  \alpha  +  \beta  =  \frac{ - b}{a}  \\  \alpha  \beta  =  \frac{c}{a}  \\  \\  \frac{1}{ \alpha }  +  \frac{1}{ \beta } =  \frac{ - b}{c}  \\  \frac{1}{ \alpha  \beta }  =  \frac{a}{c}  \: \\ required \: equation \:  is \: k ({x}^{2}  - ( \frac{ - b}{c})x + ( \frac{a}{c} ) )\\  = k( {x}^{2} +  \frac{b}{c}x +  \frac{a}{c}   ) \\ let \: k = c \\  =c ( {x}^{2} +  \frac{b}{c}  x +  \frac{a}{c} ) \\  = c {x}^{2}  + bx + a \: is \: the \: required \: polynomial

Similar questions