Math, asked by sachinsaji7751, 1 year ago

Find a quadratic polynomial with zeros 3+5 and 3-5

Answers

Answered by ravipratapsingh68
1

alpha =3+5= 8

beta=3-5=-2

alpha+beta =8+(-2)=6

alpha×beta=8×-2=-16

equation become,

x²+(alpha+beta)x+alpha×beta

x²+6x-16

Answered by Anonymous
1

The quadratic polynomial whose zeroes are,

5 \sqrt{3} ,5 -  \sqrt{3}

 \alpha , \beta  \: is \: f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

where k is any non-zero real no.

THE QUADRATIC POLY POLYNOMIAL WHOSE ZEROES ARE

5 \sqrt{3} ,5 -  \sqrt{3}

 f(x) = k[ {x}^{2} - ( \alpha  +  \beta )x +  \alpha  \times  \beta  ]

 f(x) = k[ {x}^{2} - ( 5  \cancel{ +  \sqrt{3}}  + 5  \cancel{ -  \sqrt{3}} )x +    (5 +  \sqrt{3}   ) (5 -  \sqrt{3}  ) ]

 f(x) = k[ {x}^{2} -10x + ( {5)}^{2}  -  ({ \sqrt{3} )}^{2}  ]

 f(x) = k[ {x}^{2} -10x + (25  - 3)]

 f(x) = k[ {x}^{2} -10x + 22]

so, the QUADRATIC polynomial is

 f(x) = k[ {x}^{2} -10x + 22]

Similar questions