Math, asked by sudi7780, 1 year ago

Find a quadratic polynpmial whose product and sum of the zeroes are -13/5 and -3/5 respectively

Answers

Answered by amitkumar44481
1

 \bold \red \star  \: \underline{Given:-} \begin{cases} \sf{ \underline{Zero  \: are:-}} \\  \sf{Product =  \frac{ - 13}{5} } .\\  \sf{Sum =  \frac{ - 3}{5}}. \end{cases}

 \bold \red \star  \: \underline{Solution:-}

Let  \: first  \: zero  \: be \:   \blue{\alpha}  \: and \:  \pink{ \beta }.

  \blue {\alpha  +  \beta  }=  \frac{ - 3}{5} \\ \\

  \pink {\alpha  \times \beta  }=  \frac{ -13}{5} \\ \\

____________________________________

 \red{k }({x}^{2}   - Sx + P.) \\  \\  \red{k} \{ {x}^{2}  - ( \frac{ - 3}{5} )x + (   \frac{ - 13}{5} ) \}  \\  \\  \red{k}\{ {x}^{2}  - ( \frac{ - 3x - 13}{5} ) \}  \\  \\   \red{k}(5 {x}^{2}  + 3x  - 13.)

____________________________________

Our \:  \:  polynomial \:  \:  become

 \:  \:  \:  \:  \:  \:  \:  \:  \:    \purple{ \boxed {\huge {\large \boxed{5 {x}^{2}  + 3x - 13.}}}}

Similar questions