Math, asked by aditya1617, 1 year ago

find a rationalize denominator

Attachments:

Answers

Answered by balraj0908
3

HOPE IT HELPS

root 5+root 3/root 5-root 3

(root 5+root 3/root 5-root 3)*root 5+root 3

(root 5+root 3)^2/2

5+3+2 root 15/2

8+2 root 15/2

4+root 15

PLS MARK ME


balraj0908: pls MARK me
Answered by Aarushi665
6

 \rm{rationalise \: the \: denominator \: of \:   \frac{\sqrt{ 5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} }}

  \implies\rm{ \frac{\sqrt{ 5}  +  \sqrt{3} }{ \sqrt{5}  -  \sqrt{3} } \times  \frac{ \sqrt{5} +  \sqrt{3}  }{ \sqrt{5}  +  \sqrt{3} } }

  \implies \rm{\frac{{(\sqrt{ 5}  +  \sqrt{3} )}^{2}  }{ {(\sqrt{5} )}^{2}   -{  (\sqrt{3} )}^{2} }}

   \implies\rm{\frac{{ {( \sqrt{5} )}^{2} +  (  \sqrt{3} )}^{2}  + 2( \sqrt{5} )( \sqrt{3} ) }{ 5 - 3}}

  \implies \rm{\frac{{ {5} + 3 } +  2\sqrt{15}  }{ 5 - 3}}

  \implies \rm{\frac{{ 8} +  2\sqrt{15}  }{ 2}}

  \implies \rm{\frac{{ \cancel{ 2}} (4+  \sqrt{15} ) }{  \cancel{2}}}

 \fbox{ \therefore{ 4 +  \sqrt{15} }}

Similar questions