Math, asked by senthu2003bd, 3 months ago

find a reduction formula integral of x^m /(log x)^n dx​

Answers

Answered by Anonymous
2

Answer:

answer is in the photo.........

Attachments:
Answered by Anonymous
12

Explanation:

 \tt \: Let,  \: I_{m,n} =  \int  \dfrac{x {}^{m} }{(log_x) {}^{n} }.dx \\  \\  \longrightarrow \tt I_{m,n} =  \int x {}^{m} (log_x) {}^{ - n} .dx \\  \\ \longrightarrow \tt I_{m,n} =  \int (log_x) {}^{ - n}  \int x {}^{m} dx -  \int( - n)(log_x) {}^{ - n - 1} dx \\  \\  \longrightarrow \tt I_{m,n} =  \int (log_x) {}^{ - n }  \:  \dfrac{x {}^{m + 1} }{m + 1}  +  \frac{n}{m + 1}  \:  I_m,(n + 1) \\  \\  \longrightarrow  \boxed{\tt I_{m,n} =  \int I_m,(n + 1) \:( \dfrac{n}{m + 1} ) +  \dfrac{x {}^{m + 1} }{(m + 1)(log_x) {}^{n} } } \\  \\ \longrightarrow   \tt I_m,(n + 1) = I_{mn} \: ( \dfrac{m + 1}{n} ) -  \dfrac{x {}^{m + 1} }{(m + 1)}   \times(  \dfrac{m + 1}{n} ) \times  \frac{1}{(log_x) {}^{n}  }  \\  \\ \longrightarrow   \tt \:I_m,(n + 1) = I_{m,n }( \dfrac{m + 1}{n} ) -  \dfrac{x {}^{m + 1} }{(n)(log_x) {}^{n} }  \\  \\  \tt \: also,can \: write \: replace \:  \red{n \rightarrow (n - 1).} \\  \\ \longrightarrow  { \boxed{ \tt{I_m,(n + 1) = I_{m,n }( \dfrac{m + 1}{n - 1} ) -  \dfrac{x {}^{m + 1} }{(n - 1)(log_x) {}^{n - 1} }  }}}

___________________

Know to more:

  • Power rule.

\bull\tt \int x {}^{n} .dx \:  \rightarrow \:  \dfrac{x {}^{n + 1} }{n + 1}  + c

  • Multiplication by constant (c).

 \bull\tt \int c \: f(x).dx \:  \rightarrow \: c \int f(x).dx

  • Sum rule.

 \bull\tt \int (f + g)dx  \rightarrow \: \int fdx \:  +  \:  \int gdx

  • Difference rule.

\bull \tt \int (f - g)dx  \rightarrow \: \int fdx \:  - \:  \int gdx

Similar questions