Math, asked by susendren, 1 year ago

find a relation between X and Y such that the point x, y is equidistant from the points 3, 6 and minus 3, 4 ​

Answers

Answered by abc1712
6

A = x, y

B = 3,6

C = 3,4

AB = AC

 \sqrt{( {3 - x})^{2}  +  {(6 - y})^{2} }  = ab

AC =

 \sqrt{( {3 - x})^{2} +  {(4 - y})^{2}  }

squaring both sides

(AB) ^2 = (BC) ^2

( {3 - x})^{2}  +  {(6 - y})^{2}  =  \sqrt{ {(3 - x})^{2} }  +  \sqrt{ {(4 - y})^{2} }

9 +  {x}^{2}  - 6x + 36 +  {y}^{2}  - 12y = 9 +  {x}^{2}  - 6x + 16 +  {y}^{2}  - 8y

36 - 16 =  - 8y + 12y

20 = 4y

20 \div 4 = y

y = 5

Answered by kriti1449
1

Answer:

The answer is 3x + y - 5 = 0 .

Step-by-step explanation:

Let the point P(x,y) be the equidistant from the points A(3,6) and B(-3,4).

therefore, PA = PB.

By using distance formula,

\sqrt{(x2-x1)^{2}\:+\: (y2-y1)^{2} } \:we\:have,\\\\\sqrt{(x-3)^{2}\:+\: (y-6)^{2} }\:=\:\sqrt{(x+3)^{2}\:+\: (y-4)^{2} }\\\\{(x-3)^{2}\:+\: (y-6)^{2} }\:=\:{(x+3)^{2}\:+\: (y-4)^{2} }\\\\x^{2} \:-\:6x\:+\:9\:+\:y^{2} \:-\:12y\:+\:36\:=\:x^{2} \:+\:6x\:+\:9\:+\:y^{2} \:-\:8y\:+\:16\\\\-\:6x\:-\:6x\:-\:12y\:+\:8y\:+\:36\:-\:16\:=\:0\\\\-\:12x\:-\:4y\:+\:20\:=\:0\\\\therefore,\:3x\:+\:y\:-\:5\:=\:0

Hope it helps you :)

Similar questions