Math, asked by savetheworld, 3 months ago

find a suitable identity and find the following products (3k+4l) (3k+4l)

Answers

Answered by neha210605
0

Answer:

3k+4 ×3k+4

Step-by-step explanation:

do the multiplication of them

Answered by Anonymous
32

\large\sf\underline{Given\::}

  • \sf\:(3k+4l) (3k+4l)

\large\sf\underline{To\::}

  • Find the product of the given expression by using some identity.

\large\sf\underline{Identity\:to\:be\:used\::}

\large{\mathfrak\red{(a+b)^{2}=a^{2}+2ab+b^{2}}}

\large\sf\underline{Solution\::}

\sf\leadsto\:(3k+4l) (3k+4l)

  • Let's express our expression in the form of \sf\:(a+b) ^{2} .

\sf\leadsto\:(3k+4l) ^{2}

  • Now we can simply use the identity

In our expression a = 3k and b = 4l

  • So let's substitute the values accordingly in the identity

\sf\leadsto\:(3k) ^{2}+2 \times 3k \times 4l + (4l)^{2}

\sf\leadsto\:9k^{2}+6k \times 4l + 16l^{2}

\small{\underline{\boxed{\mathrm\orange{\leadsto\:9k^{2}+24kl + 16l^{2}}}}}

\dag\:\underline{\sf So\:the\:required\:product\:is\:9k^{2}+24kl + 16l^{2}} .

!! Hope it helps !!

Similar questions