Math, asked by sheetalranabhat57, 8 months ago

Find absolute maxima and absolute minima of f(x)=2x^3-15x^2+36x+10 on [1,4] . ​

Answers

Answered by shinchanisgreat
5

Answer:

 =  > y = f(x) = 2 {x}^{3}  - 15 {x}^{2}  + 36x + 10 \\  =  >  \frac{dy}{dx}  = 6 {x}^{2}  - 30x + 36 \\  \\ let \:  \frac{dy}{dx}  = 0 \\  =  > 6 {x}^{2}  - 30x + 36 = 0 \\  =  > 6( {x}^{2}  - 5x + 6) = 0 \\  =  >  {x}^{2}  - 5x + 6 = 0 \\  =  >  {x}^{2}  - 2x  - 3x + 6 = 0 \\  =  > x(x - 2) - 3(x - 2) = 0 \\  =  > (x - 2)(x - 3) = 0 \\  =  > x = 2 \: or \: 3 \\  \\  \\   f(1) = 2 {(1)}^{3}  - 15 {(1)}^{2}  + 36(1) + 10   = 2 - 15 + 36 + 10 = 48 - 15 = 33 \\ f(2) = 2 {(2)}^{3}  - 15 {(2)}^{2}  + 36(2) + 10 = 16 - 60 + 36 + 10 = 62 - 60 = 2 \\ f(3) = 2 {(3)}^{3}  - 15 {(3)}^{2}  + 36(3) + 10 = 54 - 135 + 108 + 10 =  172- 135 = 37 \\ f(4) = 2 {(4)}^{3}  - 15 {(4)}^{2}  + 36(4) + 10 = 128 - 240 + 144 + 10 = 282 - 240 = 42 \\  \\  \\  \\  \\  \\ hence \:  \:  \: absolute \:  \: maxima \:  \:  = 42   \: \: and \:  \: absolute \:  \: minima \:  \:  = 2

Hope this answer helps you ^_^ !

Similar questions