Find all four-digit numbers abba with the property aa . 10b= abba
abba if a
Answers
Given :- Find all four-digit numbers abba with the property aa . 10b= abba if a ≠ b . [ Note :- aa is a two digit number and 10b is a three digit number. ]
Answer :-
given that, abba is four digit number,
so,
→ abba = 1000a + 100b + 10b + a
→ abba = 1000a + a + 100b + 10b
→ abba = 1001a + 110b
now,
→ aa = 2 digit number = 10a + a = 11a .
→ 10b = 3 digit number = (100 + b)
then,
→ aa . 10b = abba
→ 11a . (100 + b) = 1001a + 110b
→ 11a . (100 + b) = 11(91a + 10b)
→ a . (100 + b) = (91a + 10b)
→ 100a + ab = 91a + 10b
→ 100a - 91a = 10b - ab
→ 9a = b(10 - a)
putting value of a now,
- if a = 1 => b = 1 , but a ≠ b .
- if a = 2 => b ≠ natural number .
- if a = 3 => b ≠ natural number .
- if a = 4 => b = 6 .
- if a = 5 => b = 9
- if a = 6 ≠ natural number .
- if a = 7 => b = 21 => two digit number .
- if a = 8 => b = two digit number .
- if a = 9 => b = two digit number .
therefore, required four digits numbers abba are :-
- 4664
- 4664 5995 .
Hence , 4664 and 5995 are four-digit numbers .
Learn more :-
if a nine digit number 260A4B596 is divisible by 33, Then find the number of possible values of A.
https://brainly.in/question/32686002
if n is an integer such that 1nn352 is a six digit number
https://brainly.in/question/26617043