Find all other zeros of polynomial x⁴+x³-9x²-3x+8 if it is given two zeros are that
Answers
Answered by
2
Heya !!!
- ( root 3 ) and (- root 3) are the two zeroes of the given polynomial.
- ( X - root 3 ) ( X + root 3 ) are also factor of polynomial P(X).
- Therefore,
( X - root 3 ) ( X + root 3) = (X² - 3)
G(X) = X²-3
P(X) = X⁴ + X³ - 9X² - 3X+ 18
- On dividing P(X) by G(X) we get,
- X² - 3 ) X⁴ + X³ - 9X² - 3X + 18 ( X² + X -6*X⁴ -3X²
---------------------------------------------
0+X³ - 6X² - 3X + 18
X³-3
----------------------------------------
0*-6X² 0*+18
-6X² +18
------------------------------------------
We get,
Remainder = 0
And,
Quotient = X² + X - 6
- After factorise the quotient we will get two other zeroes of the given polynomial.
=> X²+X -6
=> X² + 3X - 2X -6
=> X ( X + 3) - 2 ( X +3)
=> (X + 3) ( X -2) = 0
=> (X + 3) = 0 OR (X -2) = 0
=> X = -3 OR X = 2
- Hence,-3 , root 3 , 2 and - root 3 are four zeroes of the polynomial X⁴+X³-9X² -3X + 18.
Similar questions