Math, asked by sreenu204308, 1 year ago

find all the positive integers triples (x, y, z) that Satisify the equation x^4+y^4+z^4=2x^2*y^2+2y^2*z^2+2z^2+x^2-63​

Answers

Answered by amitnrw
4

2 , 2 , 3   &  4 , 4 , 1  are two triplets Satisfy the equation x⁴ + y⁴ + z⁴ = 2x²y² + 2y²z² + 2z²x² - 63

Step-by-step explanation:

x⁴ + y⁴ + z⁴ = 2x²y² + 2y²z² + 2z²x² - 63

=> x⁴ + y⁴ + z⁴ - 2x²y² - 2y²z² - 2z²x² =  - 63

=> (x² - y² - z²)² -  (2yz)² = -63

=>  (x² - y² - z² + 2yz) (x² - y² - z² - 2yz) = -63

=>  (x² - (y -z)²)(x² -(y + z)²) = -63

=> ( x + y - z)(x - y + z) ( x + y + z)(x - y - z) = -63

=> ( x + y - z)(x - y + z) ( x + y + z)(-x + y + z) = 63

=> ( x + y + z) ( x + y - z)(x - y + z)(-x + y + z) = 63

=> A . B . C . D = 63

A , B , C D can be  1 , 3 , 7 , 9 , 21 , 63 only

B + C + D =  x + y - z + x - y + z -x + y + z = x + y + z = A

so possible Factor of B C D are

3 , 3 , 1  & A = 7 => 3 * 3 * 1 * 7 = 63    

7 , 1 , 1   & A = 9  => 7 * 1 * 1 * 9 = 63

Case 1

x + y + z = 7

we get  x , y z  as    2 , 2 , 3   ( not respectively)

Case 2

x + y + z = 9

we get  x , y z  as    4 , 4 , 1     ( not respectively)

Similar questions