find all the zeroes of the polynomial p(x) = x4 – 7x³ + 9x² + 13x – 4, if two of its zeroes are 2 + √ 3 and 2 - √ 3.
Answers
Answer:
Given, p(x)=x^4 - 7x³ + 9x² + 13x - 4
two zeros of p(x) = 2 + √3 , 2 - √3
= (x-2-√3) (x-2+√3)
= (x-2)² - (√3)²
= x²+ 4 - 4x - 3
= x²- 4x +1 = g(x)
now divide p(x) with g(x):
x²- 4x +1 ) x^4 - 7x³ +9x² +13x - 4 ( x² - 3x - 4
x^4 - 4x³ + x²
(-)__(+)___(-)__________
0 - 3x³ + 8x² +13x - 4
- 3x³ +12x² - 3x
(+)___(-)___(+)______
0 - 4x² +16x - 4
- 4x² +16x - 4
(+)___(-)__(+)___
{ 0. }
now take q(x) , = x² - 3x -4
now spliting of middle terms,
= x² - 4x + x - 4
= x(x - 4) + 1(x-4)
= (x - 4) (x + 1)
x = 4 , -1
therefore, the other zeros of p(x) = 4 , -1