Math, asked by hemanjalikapakayala, 10 months ago

In ⊿ABC, ∠B = 90 and tan⁡= 3/4 . Find the values of sinA⁡ cosC⁡+ cosA⁡ sinC⁡ .

Answers

Answered by BrainlyConqueror0901
17

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{sin\:A\:cos\:C+cos\:A\:sin\:C=1}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }}  \\  \tt:  \implies  \angle B= 90 \degree \\  \\  \tt: \implies tan \:   A =  \frac{3}{4}   \\  \\ \red{\underline \bold{To \: Find : }}  \\  \tt: \implies sin \: A\: cos \: C+ cos \: A \: sin \: C = ?

• According to given question :

 \tt \circ \: tan \:  A = \frac{3}{4}   =  \frac{p}{b}  \\  \\ \bold{As \: we \: know \: that} \\  \tt:  \implies  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\ \tt:  \implies {h}^{2}  = {3}^{2}  +  {4}^{2}  \\  \\ \tt:  \implies {h}^{2}  =9 + 16 \\  \\ \tt:  \implies {h}^{2}  =25 \\  \\ \tt:  \implies {h} = \sqrt{25}  \\   \\  \green{\tt:  \implies {h} =5 } \\  \\  \bold{For \: finding \: value : } \\  \tt:  \implies sin \: A \: cos \: C + cos \: A  \: sin \: C =  \frac{p}{h}  \times  \frac{b}{h}  +  \frac{b}{h}  \times  \frac{p}{h}  \\  \\ \tt:  \implies sin \: A \: cos \: C + cos \: A  \: sin \: C=  \frac{3}{5}   \times  \frac{3}{5}  +  \frac{4}{5}  \times  \frac{4}{5}  \\  \\ \tt:  \implies sin \: A \: cos \: C+ cos \: A  \: sin \: C = \frac{9}{25}  +  \frac{16}{25}  \\  \\ \tt:  \implies sin \: A \: cos \: C + cos \: A \: sin \: C= \frac{9 + 16}{25}  \\  \\ \tt:  \implies sin \: A\: cos \: C+ cos \: A \: sin \: C= \frac{25}{25}  \\  \\ \green{\tt:  \implies sin \: A\: cos \: C+ cos \:A  \: sin \: C =1}

Answered by ItzArchimedes
10

Given:

  • In ∆ABC , ∠B = 90°
  • tanA = 3/4

To find:

  • sinA.cosC + cosA.sinC

Solution:

tanA = 3/4

Using Pythagoras theorem

→ Hyp² = 3² + 4²

→ Hyp = √25

→ Hyp = 5

Now,

sinA.cosC + cosA.sinC

  • sin∅ = opposite/hypotenuse
  • cos∅ = adjacent/hypotenuse

→ 3/4 × 3/4 + 4/5 × 4/5

→ 3²/4² + 4²/5²

→ 9/16 + 16/25

→ 25/25

→ 1 [ Answer ]

Similar questions