Math, asked by kuldeepsachdev7145, 1 year ago

Find all the zeroes of the polynomial wx^4+7x^3-19x^2-14x+30 if two of it's zeroes are √2,-√2

Answers

Answered by Noah11
1
Zeroes of polynomial are √2 and -√2
Factor will be 
(x-√2)(x+√2)
=(x²-2)

now, dividing the polynomial with this factor,

x²-2)2x⁴ +7x³ -19x² -14x +30(2x²+7x-15
       2x⁴         -4x²
      -             +
       0     7x³-15x²-14x+30
              7x³        -14x
             -             +
              0    -15x  0   +30
                    -15x       +30
                    +            - 
                     0              0

So, the factors are (x²-2)(2x²+7x-15)
=(x²-2)(2x²+10x -3x -15)
=(x²-2)[2x(x+5)-3(x+5)]
=(x²-2)(x+5)(2x-3)

so, other zeroes are -5 and 3/2

Hope it helps!!

Mark as Brainliest! :)
Similar questions