Math, asked by jatin83151, 11 months ago

find all the zeros of the polynomial 5 x cube minus 15 x square - 3 x + 9 if two of its zeros are whole root 3 upon 5 and minus 4 root 3 upon 5​

Answers

Answered by mysticd
6

 Let \: p(x) = 5x^{3} - 15x^{2} - 3x + 9

 \sqrt{\frac{3}{5}} \:and \: -\sqrt{\frac{3}{5}}\:are \\two \: zeroes \: of \: p(x)

 \left( x - \sqrt{\frac{3}{5}}\right) \left( x + \sqrt{\frac{3}{5}}\right) \\= x^{2} - \left( \sqrt{\frac{3}{5}}\right)^{2} \\= x^{2} - \frac{3}{5}\\= \frac{5x^{2} - 3}{5} \\= \frac{1}{5} ( 5x^{2} - 3) \: is \: a \: factor \: p(x)

5x²-3| 5x³-15x² - 3x + 9 | x-3

******** 5x³ + 0 - 3x

____________________

************** -15x² + 0 + 9

************** -15x² + 0 + 9

____________________

Remainder (0)

(x-3) is a factor of p(x)

Therefore.,

 3 \: is \: other \: zero \: of \: p(x)

•••♪

Answered by shweta8887525054
4

Answer:

Try to do it by yourself

Similar questions