Math, asked by MrWho, 8 months ago

FIND AMPLITUDE OF THIS


❌DON'T SPAM❌​

Attachments:

Answers

Answered by hukam0685
3

Step-by-step explanation:

Given:

 z = \frac{1 -  \sqrt{3}i }{ \sqrt{3 + i} }  \\

To find: Amplitude of Complex number

Solution:

Find the square root of

 \sqrt{3 + i}  \\

Let

 \sqrt{3 +i}  = x + iy \\  \\ square \: both \: sides \\  \\ 3 +i =  {x}^{2} -  {y}^{2}   + 2ixy \\  \\  \text{compare real \: term \: and \: imaginary \: term} \\  \\  {x}^{2}  -  {y}^{2}  = 3 \:  \:  \: ...eq1 \\  \\ 2xy =  1 \\  \\  \text{take \: modulus \: of \: complex \: number} \\  \\  {x}^{2}  +  {y}^{2}  = 10...eq2 \\

From eq1 and eq2

 {x}^{2} -   {y}^{2}  = 3 \\  {x}^{2}  +  {y}^{2}  = 10 \\  -  -  -  -  -  -  \\ 2 {x}^{2}  = 13 \\  \\  {x}^{2}  =  \frac{13}{2}  \\  \\  {x}^{2}  = 6.5 \\  \\ x =  ± \sqrt{6.5}  \\  \\

put the value of x in eq1

 {x}^{2}  -  {y}^{2}  = 3 \\  \\ 6.5 -  {y}^{2}  = 3 \\  \\  -  {y}^{2}  = 3 - 6.5 \\  \\  {y}^{2}  = 3.5 \\  \\ y =  ± \sqrt{3.5}  \\  \\

Thus

 \sqrt{3 + i}  =  ± ( \sqrt{6.5}  + i \sqrt{3.5} ) \\  \\ take \\  \\ \sqrt{3 +i}  =  ( \sqrt{6.5}  + i \sqrt{3.5} ) \\  \\

\frac{1 -  \sqrt{3}i }{ ( \sqrt{6.5}  + i \sqrt{3.5} ) }  \times  \frac{ ( \sqrt{6.5}   -  i \sqrt{3.5} ) }{ ( \sqrt{6.5}   -  i \sqrt{3.5} ) }  \\  \\  =  \frac{(1 -  \sqrt{3}i ) \times ( \sqrt{6.5}   -  i \sqrt{3.5} ) }{ ( \sqrt{6.5})^{2}    + (\sqrt{3.5}) ^{2}  }  \\  \\  =  \frac{(1 -  \sqrt{3}i ) \times ( \sqrt{6.5}  - i \sqrt{3.5} )}{10}  \\  \\  \because {i}^{2}   =  -1   \\  \\  \frac{ \sqrt{6.5}   - i \sqrt{3.5}  - i \sqrt{19.5}   +  \sqrt{10.5} }{ 10 }  \\  \\  =  \frac{ \sqrt{6.5} +  \sqrt{10.5}  }{10}  - i \frac{ \sqrt{3.5}  + \sqrt{19.5} }{10}  \\  \\   = \frac{2.55 +  3.24  }{10}  - i \frac{1.87 +4.42}{10}  \\  \\  \\  = 0.58 - i0.63 \\  \\

Magnitude of z

 |z|  =  \sqrt{ {(0.58)}^{2}  + ( { - 0.63)}^{2} }  \\  \\  =  \sqrt{0.3364 + 0.3956}  \\  \\  =  \sqrt{0.732}  \\  \\  |z|  = 0.855 \\  \\

Hope it helps you.

To learn more on brainly:

1)For z = 2 + 3i verify the following:

i) \overline{\bar{z}} = z

ii) z\bar{z} = |z|^{2}

https://brainly.in/question/7782722

2)Simplify the given and express in the form of a + ib.

\frac{5+7i}{4+3i} +\frac{5+7i}{4-3i}

https://brainly.in/question/7853522

Similar questions