Find an if the function f(x) = x-x³ in -π
Answers
Answered by
0
Step-by-step explanation:
Correct option is A)
f(x)=x
3
−9kx
2
+27x+30 is increasing on R.
f(x)=x
3
−9kx
2
+27x+30
f
′
(x)=3x
2
−18kx+27
=3(x
2
−6kx+9)
Given f(x) is increasing on R
⇒f
′
(x)>0 for all x∈R
⇒3(x
2
−6kx+9)>0
(x
2
−6kx+9)>0 all x∈R
ax
2
+bx+c>0
so, (−6k)
2
−4(1)(9)<0
⇒36k
2
−36<0
(k+1)(k−1)<0
It can be possible when (k+1)<0 and d(k−1)>0
⇒k<−1 and k>1 (not possible)
or, (k+1)>0 and (k−1)<0
k>−1 and k<1
−1<k<1 so option A is correct.
Similar questions