find angle CMN?
if AB = AC
BC= CM
Answers
Step-by-step explanation:
Given:
angleCAX=139°
AB=AC
BC=CM
segCB||segNM
seg CM is angle bisector of angle ACB
To find:
angleCMN
Proof:
angle CAX+angle CAB= 180° .......
( angles in a linear pair)
139° + angle CAB= 180°
angle CAB= 180°-139
therefore,
angle CAB= 41° ...... (1)
In ∆ ABC,
angle ABC= angle ACB =x ° (2) ......
( Isosceles triangle theorem)
angle CAB+angle ABC + angle ACB=180°
....... ( sum of measure of all angles of a triangle is 180°)
41° +x°+x°= 180° .... [ from(1)&(2)]
x+x= 180-41
2x= 139
x= 139/2
x= 69°30'
therefore,
angle ABC= angle ACB= x°=69°30'
angle ACM = angle MCB = q° (3).......
( angle bisector theorem )
angle ACB= angle ACM + angle MCB
.....[from(3)] ( angle addition property)
therefore,
69°30'= q°+q°
69.30= 2q
q= 69.30/2
q= 34.65
therefore,
q°= 35°5'
therefore,
angle ACM= angle MCB= q°=35°5'
angle CMN= angle MCB .......
( Alternate angle theorem.
seg CB || segMN,
On transversal MC.)
therefore,
angle CMN= 35°5'