Math, asked by ambilim, 1 year ago

find any four solutions for the equation 2x minus 5 Y + 3 is equal to zero​

Answers

Answered by Tomboyish44
9

Equation: 2x - 5y + 3 = 0

2x - 5y + 3 = 0

2x - 5y = -3

Solution 1:

If x = 0

2x - 5y = -3

2(0) - 5y = -3

- 5y = -3

5y = 3

\sf y = \dfrac{3}{5}

∴ (0 , \sf \frac{3}{5}) is a solution.

Solution 2:

If x = -9

2x - 5y = -3

2(-9) - 5y = -3

-18 - 5y = -3

-5y = -3 + 18

-5y = -15

5y = 15

\sf y = \dfrac{15}{5}

y = 3

∴ (-9 , 3) is a solution.

Solution 3:

If x = 1

2x - 5y = -3

2(1) - 5y = -3

2 - 5y = -3

-5y = -3 - 2

-5y = -5

5y = 5

\sf y = \dfrac{5}{5}

y = 1

∴ (1 , 1) is a solution.

Solution 4:

If x = -1

2x - 5y = -3

2(-1) - 5y = -3

-2 - 5y = -3

-5y = -3 + 2

-5y = -1

5y = 1

\sf y = \dfrac{1}{5}

∴ (-1 , \sf \frac{1}{5}) is a solution.

Solutions

\longrightarrow (0 , \sf \frac{3}{5})

\longrightarrow (-9 , 3)

\longrightarrow (1 , 1)

\longrightarrow (-1 , \sf \frac{1}{5})

Similar questions