Math, asked by shubhangiDimri, 1 year ago

find area of a field which is in shape of trapezium having parallel sides are 20m and 42m and non parallel sides are 21m and 23m.

Answers

Answered by MOSFET01
81
Refer diagram from attachment please follow it.\uparrow\:\uparrow

\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet<br />

Given : ABCD is a trapezium whose parallel sides are AB||CD :

AB = 20 m ; CD = 42 m

Non parallel sides are :

AD = 21 m ; BC = 23 m

Construction : Draw a parallel line from B to O so that DA||BO.

As notified the ABDO is a parallelogram and AD = BO = 21 m

Solution :

OC = DC - DO

 \implies 42 - 20 \\\implies 22\: m

In ∆BOC

 S = \frac{a+b+c}{2} \\\implies \frac{22+21+23}{2}\\\implies \frac{66}{2} \\\implies 33 m

Area \: of\: \triangle BOC = \sqrt{S(S-a)(S-b)(S-c)}\\\implies \sqrt{33(33-22)(33-21)(33-23)} \\\implies \sqrt{33\times 11\times 12\times 10} \\\implies \sqrt{ 11\times3\times 11\times 4\times 3 \times 10} \\\implies 3\times 11\times 2 \sqrt{10} \\\implies 66\times 3.162\\\implies 208.56\: m^{2}

Area \:of \:\triangle{BOC}= \frac{1}{2} \times Base \times Height\\ \implies 2 \times 208.56 = OC\times BF \\\implies BF(h) = \frac{208.56\times2}{22} \\\implies 18.97\: m

 Area\: of\: trapezium\:ABCD= \frac{1}{2} \times(sum \:of \:parallel\: sides)\times height\\\implies \frac{1}{2} \times (42+20)\times 18.97\\\implies \frac{\cancel{66}}{\cancel{2}}\times 18.97 \\\implies 588.09 \: m^{2}

\red{\underline{Answer}}

\pink{\bold{\boxed{ Area \: of\: trapezium = 588.09 \: m^{2}}}}
Attachments:

shubhangiDimri: tysm its really hlp me..
MOSFET01: welcome
PrincessNumera: Fabulous
MOSFET01: thanks
Anonymous: Great
MOSFET01: thanks
Similar questions