Math, asked by jayasuriya18, 1 year ago

find area of the triangle whose vertices are A (10,-6) ,B(2,5) and c (-1,3)​

Answers

Answered by mohitshekhawat6
16

24.5 sq unit

by putting the area of triangle formulae

Attachments:
Answered by BrainlyConqueror0901
16

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Area\:of\:triangle=24.5\:sq\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{: \implies Coordinate \: of \: A= (10,-6) } \\  \\ \tt{: \implies Coordinate \: of \: B = (2,5) } \\  \\ \tt{: \implies Coordinate \: of \: C = (-1,3) } \\  \\ \red{ \underline \bold{To \: Find : }} \\  \tt{: \implies Area \: of \: triangle = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt{:  \implies Area \: of \: triangle =  \frac{1}{2}  | x_{1} ( y_{2} -  y_{3}) +  x_{2}(  y_{3} -  y_{1}) +  x_{3}( y_{1} -  y_{2} ) | } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |10(5- 3) + 2(3-( - 6))- 1(-6 - 5)| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |10 \times 2 +  2\times 9 -1 \times -11| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2}  |20+ 18 +11| } \\  \\ \tt{:  \implies Area \: of \: triangle = \frac{1}{2} \times 49} \\  \\   \green{\tt{:  \implies Area \: of \: triangle =24.5 \: sq \: units}} \\  \\   \purple{\bold{Some \: formula \: related \: to \: coordinate \: geometery}} \\   \pink{\tt{ \circ \:  Distance \: formula =  \sqrt{ (x_{2}  -  x_{1})^{2}  + ( y_{2} -  y_{1} )^{2} } }} \\  \\   \pink{\tt{ \circ \: Section \: formula  = x=  \frac{m  x_{2}  + n x_{1} }{m + n} }}

Similar questions