Math, asked by tansyjena4820, 11 months ago

Find area of the triangle with vertices at the point given in each of the following (-2, -3), (3, 2), (-1, -8)

Answers

Answered by SparklingBoy
30

Answer:

We have the formula to find area of triangle whose all vertices are given

as

(x1, y1) , (x2, y2) , (x3, y3)

i.e.

Area =  \frac{1}{2}  | x_1(y_2-y_3) + x_2( y_3-y_1) + ( x_3)(y_1-y_2) |

Now,

using above formula we can easily find the area of triangle whose vertices are given in the question as:-)

Area =  \frac{1}{2}  | - 2(2 + 8) + 3( - 8 + 3) + ( - 1)( - 3 - 2) |  \\  \\  =  \frac{1}{2}  | - 20 - 15 + 5|  \\  \\  =  \frac{1}{2}  | - 30|  \\  \\  =  \frac{1}{2}  \times 30 \\  \\  = 15sq. \: units

Answered by Anonymous
109

AnswEr :

Let's know the rule for finding Area of Triangle with given Vertices.

let's assume Vertices of Triangle as :

⋆ (x₁ , y₁) ; (x₂ , y₂) and (x₃3 , y₃)

 \boxed{ \small\sf{Ar. \:  of  \: \triangle=   \dfrac{1}{2}   \times | x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2 )| }}

━━━━━━━━━━━━━━━━━━━━━━━━

Let's Head to the Question Now :

⋆ Given Vertices Here is (-2, -3), (3, 2), (-1, -8)

 \small\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{2}    \times | x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|}

 \small\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{2}    \times |  - 2(2-( - 8))+3( - 8  - ( - 3))+( - 1)( - 3-2)|}

 \small\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{2}    \times |  - 2(2  +  8)+3( - 8   + 3) -  1( - 3-2)|}

 \small\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{2}    \times |  (- 2 \times 10)+(3 \times  - 5) - (1 \times - 5)|}

 \small\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{2}    \times |   - 20+( - 15) - (- 5)|}

\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{2}    \times |   - 20 - 15 + 5|}

\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{2}    \times |- 35 + 5|}

\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{2}    \times | - 30|}

\sf{Ar. \:  of  \: \triangle=  \dfrac{1}{ \cancel2}    \times  \cancel{30}}

  \large\boxed{\sf{Ar. \:  of  \: \triangle= 15}}

Hence, Area of \triangle is 15 square units.

Similar questions
Math, 5 months ago