Math, asked by di2patithaaswec, 1 year ago

Find argument of 1/1-i

Answers

Answered by abhayram
13
1/1-i=1+i/2
=1/2+i/2⇒pi/4 (in graph its an isoceles triangle 45 degree)
Answered by pinquancaro
24

Answer:

The argument of z is z=\frac{\pi}{4}

Step-by-step explanation:

Given : z=\frac{1}{1-i}

To find : The argument?

Solution :

First we solve the given expression by rationalizing,

z=\frac{1}{1-i}\times \frac{1+i}{1+i}

z=\frac{1+i}{1^2-i^2}

z=\frac{1+i}{1-(-1)}

z=\frac{1+i}{2}

z=\frac{1}{2}+\frac{i}{2}

We know, z=r\cos\theta+ir\sin\theta

Where, r=\sqrt{a^2+b^2} \\r=\sqrt{(\frac{1}{2})^2+(\frac{1}{2})^2} \\r=\sqrt{\frac{2}{4}} \\r=\sqrt{\frac{1}{2}}

On comparing,

r\cos\theta=\frac{1}{2}

Put r=\sqrt{\frac{1}{2}}

\frac{1}{\sqrt{2}}\cos\theta=\frac{1}{2}

\cos\theta=\frac{\sqrt{2}}{2}

\cos\theta=\cos(\frac{\pi}{4})

\theta=\frac{\pi}{4}

On comparing,

r\sin\theta=\frac{1}{2}

Put r=\sqrt{\frac{1}{2}}

\frac{1}{\sqrt{2}}\sin\theta=\frac{1}{2}

\sin\theta=\frac{\sqrt{2}}{2}

\sin\theta=\sin(\frac{\pi}{4})

\theta=\frac{\pi}{4}

Both are positive so argument lies in first quadrant.

Therefore, The argument of z is z=\frac{\pi}{4}

Similar questions