Math, asked by parasavprajwal, 1 year ago

Find at least two x that make this equation true:

sin [x + {(π^3 + 2√ π^6)/(π^2 + π^2)} + π^π^0 ] = cos [x + {((−1)^16 / 2)} − {log2 ( √ 8) / 3 }]

Attachments:

Answers

Answered by sonuvuce
6

Answer:

0, π/2

Step-by-step explanation:

\frac{\pi^3+2\sqrt{\pi^6}}{\pi^2+\pi^2} +\pi^{\pi^0}

=\frac{\pi^3+2\pi^3}{2\pi^2} +\pi^{1}

=\frac{3\pi^3}{2\pi^2} +\pi

=\frac{3\pi}{2} +\pi

=\frac{5\pi}{2}

=2\pi +\frac{\pi}{2}

Again

\frac{(-1)^{16}}{2}-\frac{\log_2\sqrt{8}}{3}

=\frac{1}{2}-\frac{\log_2 2^{3/2}}{3}

=\frac{1}{2}-\frac{(3/2)\log_2 2}{3}

=\frac{1}{2}-\frac{1}{2}

=0

Therefore,

\sin(x+\frac{\pi^3+2\sqrt{\pi^6}}{\pi^2+\pi^2} +\pi^{\pi^0})=\cos(\frac{(-1)^{16}}{2}-\frac{\log_2\sqrt{8}}{3})

\implies \sin(x+2\pi +\frac{\pi}{2})=\cos(x+0)

\implies \sin(2\pi +\frac{\pi}{2}+x)=\cos(x)

\implies \sin(\frac{\pi}{2}+x)=\cos(x)

Which is true for all x ∈ R

Therefore, two values that satisfy the equation can be 0, \frac{\pi}{2}

Hope this helps.

Similar questions