Math, asked by absencex, 11 months ago

find b
\implies\sf \: Θ =  \frac{12}{5}
find the value of
\implies\sf \:  \frac{1 +  \sin Θ }{1 -  \sin Θ }

please solve it ​

Answers

Answered by todinson255
0

Answer:

25

Step-by-step explanation:

=1+sini/1-sini

=1+12/13/1-12/13

=25

Answered by Anonymous
10

Answer:

\huge{\underline{\bf{\red{Solution:-}}}}

we have ,

  \implies\sf \ \:  \tan  Θ =  \frac{12}{5}

 \implies\sf \: ∴ \:  \sinΘ =  \sqrt{1 +  { \tan }^{2} Θ}  =  \sqrt{1}  + ( \frac{12}{5 } ) {}^{2}  =  \sqrt{ \frac{169}{25}  = }  \frac{13}{5}

\implies\sf \:∴ \ \cosΘ =  \frac{1}{ { \sec Θ }^{} }  =  \frac{5}{13}

\small{\underline{\bf{\green{NOW,}}}}

 \sinΘ =  \sqrt{1 -  { \cos }^{2}  Θ } \implies \sinΘ =  \sqrt{1 - ( \frac{5}{13})  {}^{2} }  =  \sqrt{ \frac{144}{169} }  =  \frac{12}{13}

\large{\underline{\bf{\pink{Thus}}}},

\implies\sf \:  \frac{1 +  \sin Θ }{1 -  \sin Θ }  =  \frac{1 + \frac{12}{13} }{1  - \frac{12}{13} }  =  \frac{ \frac{25}{13} }{ \frac{1}{13} }  = 25

\large{\underline{\bf{\green{HENCE \:  \:  PROVED }}}}

Similar questions