Math, asked by uday6827, 9 months ago

find common ratio for GP 1/√2,-2,8/√3​

Answers

Answered by Anonymous
11

GiveN :

  • 1/√2 , -2 , 8/√3 is a GP

To FinD :

  • Common Ratio (r)

SolutioN :

Use formula for common ratio :

\longrightarrow \sf{r_1 \: = \: \dfrac{a_2}{a_1}} \\ \\ \longrightarrow \sf{r_1 \: = \: \dfrac{\dfrac{-2}{1}}{\sqrt{2}}} \\ \\ \longrightarrow \sf{r_1 \: = \: \dfrac{2 \sqrt{2}}{1}}

  • So, r1 is 2√2/1

______________________________

Now,

\longrightarrow \sf{r_2 \: = \: \dfrac{a_3}{a_2}} \\ \\ \longrightarrow \sf{r_2 \: = \: \dfrac{\dfrac{8}{\sqrt{3}}}{-2}} \\ \\ \longrightarrow \sf{r_2 \: = \: \dfrac{-2 \: \times \: 8}{\sqrt{3}}} \\ \\ \longrightarrow \sf{r_2 \: = \: \dfrac{-16}{\sqrt{3}}}

  • So, r2 is -16/√3

______________________________

As,

\longrightarrow \sf{r_1 \: \neq \: r_2}

So, therefore no common ratio exists

  • and the given terms are not in GP
Answered by Anonymous
5

{\bf{\boxed{\bf{\red{Answer:}}}}}

Given question:

 \tt \dfrac{1}{ \sqrt{2}  } \:  ,-2 \: ,  \dfrac{8}{43} = GP

To Find:

\tt Find  \: common \:  ratio.

Note:

\tt The  \: given  \: terms \:  aren't  \: in \:  GP.

Using formula:

\sf r_1   =   \dfrac{a_{2}}{a_{1} }

\sf r_{1}  =  \dfrac{ \dfrac{ - 2}{1} }{ \sqrt{2} }

{\bf{\boxed{\bf r_{1}   =  \dfrac{2 \sqrt{2} }{1} }}}}

Therefore, r₁ = 2 √2/1.

\sf r_{2}  =  \dfrac{a_{3}}{a_{2} }

\sf r_{2}   =  \dfrac{ \dfrac{8}{ \sqrt{3} } }{ - 2}

\sf r_{2}  =  \dfrac{ - 2 \times 8}{ \sqrt{3} }

{\bf{\boxed{\bf r_{2}  = \dfrac{ - 16}{ \sqrt{3} }}}}

Therefore, r₂ = -16/√3.

Finally, r₁ ≠ r₂ and there's no common ratios.

Similar questions