Math, asked by digvijayp738, 1 month ago

find coordinates of point which divides the line segment joining P (2,-3)and Q (-4,6) into 3 equal parts .​

Answers

Answered by amitbobbypathak
0

Answer:

Let P & Q be the points of trisection. Then AP:PB=1:2 & AQ:QB=2:1

(i) Let P divides AB in ratio 1:2

Hence m  

1

=1;m  

2

=2;x  

1

=2;y  

1

=−3;x  

2

=−4,y  

2

=−6

P(x,y)=P(  

m  

1

+m  

2

 

m  

1

x  

2

+m  

2

x  

1

 

,  

m  

1

+m  

2

 

m  

1

y  

2

+m  

2

y  

1

 

)=P(  

1+2

1(−4)+2(2)

,  

1+2

1(−6)+2(−3)

)

=P(  

3

−4+4

,  

3

−6−6

)=P(0,0)

(ii) Let Q divides AB in ratio 2:1

Here m  

1

=2,m  

2

=1,x  

1

=2,y  

1

=−3,x  

2

=−4,y  

2

=−6

=Q(  

2+1

2(−4)+1(2)

,  

2+1

2(−6)+1(−3)

)

=Q(  

3

−8+2

,  

3

−12−3

)

=Q(−2,−5)

∴ Hence the coordinates of points of trisection are (0,0) & (−2,−5

BRAINLEST MARK KR DO NA

Answered by nitvaniya123
1

Step-by-step explanation:

=>Let P & Q be the points of trisection.

Then AP:PB=1:2 & AQ:QB=2:1

Condition-1 :

=>Let P divides AB in ratio 1:2

Hence,

m=1 , m'=2

x=2 , y= -3

x'= -4 , y'=6

P(x,y)

=P[(mx'+m'x) /(m+m') , (my'+m'y) /(m+m')]

=P[(1)(-4)+(2)(2) /(1)+(2) , (1)(6)+(2)(-3) /(1)+(2)]

=P[(-4+4) /3 , (6-6) /3]

=P(0 , 0)

Condition-2 :

=>Let Q divides AB in ratio 2:1

Hence,

m=2 , m'=1

x=2 , y= -3

x'= -4 , y'=6

Q(x,y)

=Q[(mx'+m'x) /(m+m') , (my'+m'y) /(m+m')]

=Q[(2)(-4)+(1)(2) /(2+1) , (2)(6)+(1)(-3) /(2+1)]

=Q[(-8+2) /3 , (12-3) /3]

=Q( -2 , 3)

Hence the coordinates of points of trisection are (0,0) & (-2,3)

Similar questions