find cos 15° by using the formula cos(A-B) = cos Acos B+sin Asin B
Answers
To find
The value of Cos15⁰
By Using
Cos(A - B) = CosACosB+SinASinB
Let
A = 60⁰ and B = 45⁰ Because A - B = 60⁰ - 45⁰ = 15⁰
So
Cos(60⁰ - 45⁰) = Cos60⁰Cos45⁰ + Sin60⁰Sin45⁰
We Know that
Cos60⁰ = 1/2
Cos45⁰ = 1/√2 = √2/2
Sin60⁰ = √3/2
Sin45⁰ = 1/√2 = √2/2
Now put the value on formula
Cos(60⁰ - 45⁰) = Cos60⁰Cos45⁰ + Sin60⁰Sin45⁰
Cos(60⁰ - 45⁰) = 1/2× √2/2 + √3/2×√2/2
Cos(60⁰ - 45⁰) = √2/4 + √6/4
Cos(60⁰-45⁰) = 1/4(√2 + √6)
So Value of Cos15⁰ = 1/4(√2 + √6)
Answer
Cos15⁰ = 1/4(√2 + √6)
To find
The value of Cos15⁰
By Using
Cos(A - B) = CosACosB+SinASinB
Let
A = 60⁰ and B = 45⁰ Because A - B = 60⁰ - 45⁰ = 15⁰
So
Cos(60⁰ - 45⁰) = Cos60⁰Cos45⁰ + Sin60⁰Sin45⁰
We Know that
Cos60⁰ = 1/2
Cos45⁰ = 1/√2 = √2/2
Sin60⁰ = √3/2
Sin45⁰ = 1/√2 = √2/2
Now put the value on formula
Cos(60⁰ - 45⁰) = Cos60⁰Cos45⁰ + Sin60⁰Sin45⁰
Cos(60⁰ - 45⁰) = 1/2× √2/2 + √3/2×√2/2
Cos(60⁰ - 45⁰) = √2/4 + √6/4
Cos(60⁰-45⁰) = 1/4(√2 + √6)
So Value of Cos15⁰ = 1/4(√2 + √6)
Answer