Find cos a and sin B
Answers
Answer:
Step-by-step-explanation:
In figure, in △PQR,
m∠PQR = 90°
∴ By Pythagoras theorem,
( PR )² = ( PQ )² + ( QR )²
⇒ ( 20 )² = ( 16 )² + ( QR )²
⇒ ( QR )² = ( 20 )² - ( 16 )²
⇒ ( QR )² = ( 20 + 16 ) ( 20 - 16 ) [ a² - b² = ( a + b ) ( a - b ) ]
⇒ ( QR )² = 36 * 4
⇒ QR = √( 36 * 4 )
⇒ QR = 6 * 2
⇒ QR = 12
Now, we know that,
─────────────────────────
Now, in △PRS,
m∠PRS = 90°
∴ By Pythagoras theorem,
( PS )² = ( PR )² + ( RS )²
⇒ ( PS )² = ( 20 )² + ( 21 )²
⇒ ( PS )² = 400 + 441
⇒ ( PS )² = 841
⇒ PS = √841
⇒ PS = √( 29 * 29 )
⇒ PS = 29
Now,
Step-by-step explanation:
Step-by-step-explanation:
In figure, in △PQR,
m∠PQR = 90°
∴ By Pythagoras theorem,
( PR )² = ( PQ )² + ( QR )²
⇒ ( 20 )² = ( 16 )² + ( QR )²
⇒ ( QR )² = ( 20 )² - ( 16 )²
⇒ ( QR )² = ( 20 + 16 ) ( 20 - 16 ) \displaystyle{\qquad\dots}… [ a² - b² = ( a + b ) ( a - b ) ]
⇒ ( QR )² = 36 * 4
⇒ QR = √( 36 * 4 )
⇒ QR = 6 * 2
⇒ QR = 12
Now, we know that,
─────────────────────────
Now, in △PRS,
m∠PRS = 90°
∴ By Pythagoras theorem,
( PS )² = ( PR )² + ( RS )²
⇒ ( PS )² = ( 20 )² + ( 21 )²
⇒ ( PS )² = 400 + 441
⇒ ( PS )² = 841
⇒ PS = √841
⇒ PS = √( 29 * 29 )
⇒ PS = 29
Now,