Math, asked by Aavyashruti215, 11 months ago

find d^2 y /dx^2 if y = e^5x - 3x^7+ 4 cos 3x​

Answers

Answered by BrainlyPopularman
3

{ \bold{ \underline{Given} : -  }} \\  \\  \:  \: y =  {e}^{5x}  - 3 {x}^{7}  + 4 \cos(3x)  \\  \\ { \bold{ \underline{ To  \:  \: find} : -  }} \\  \\  =  >  \frac{ {d}^{2}y }{d {x}^{2} }  \\  \\ { \bold{ \underline{solution} : -  }} \\  \\  =  > y =  {e}^{5x}  - 3 {x}^{7}  + 4 \cos(3x)  \\  \\  \\  \:   \:  \: . \:  \: Now  \:  \: differentiate \:  \:   with \:  \:  respect  \:  \: to \:  \:  x -  \\  \\  =  >  \frac{dy}{dx}  = 5 {e}^{5x}  - 21 {x}^{6}  + 4 ( -  \sin(3x) ) \times 3 \\  \\  \\    \:  \:  \: . \:  \: Again \:  \:  differentiate   \:  \: with \:  \:  respect \:  \:  to \:  \:  x -  \\  \\ =  >    \frac{ {d}^{2}y }{d {x}^{2} }  = 25 {e}^{5x}  - 126 {x}^{5}  - 12 \times 3( \cos(3x) ) \\  \\  =  >  \frac{ {d}^{2}y }{d {x}^{2} }  = 25 {e}^{5x}  - 126 {x}^{5}  - 36 \cos(3x)   \\ \\  \\ { \bold{ \underline{Used  \:  \: formula} : -  }} \\  \\ (1) \:  \:  \frac{d( {e}^{x}) }{dx}  =  {e}^{x}  \\  \\ (2) \:  \:  \frac{d( {x}^{n}) }{dx}  = n {x}^{n - 1}  \\  \\ (3) \:  \:  \frac{d( \cos(x) )}{dx}  =  -  \sin(x)  \\  \\ (4)  \:  \: \frac{d( \sin(x)) }{dx}  =  \cos(x)

Similar questions