Math, asked by BhushanThakare, 1 year ago

find d^2y / dx^2 if. 1) x=3 cost - 2 cos^3 t & y= 3sint - 2 Sin^3t

Answers

Answered by MaheswariS
13

x=3\;cos\;t-2\;cos^3t

\displaystyle\frac{dx}{dt}=-3\;sin\;t-6\;cos^2t(-sint)

\displaystyle\frac{dx}{dt}=-3\;sin\;t+6\;cos^2t\;sint

\displaystyle\frac{dx}{dt}=3\;sin\;t(2\;cos^2t-1)

\text{Using }\boxed{\bf\,cos2A=2\;cos^2A-1}

\displaystyle\frac{dx}{dt}=3\;sin\;t\;cos2t

\text{and}

y=3\;sin\;t-2\;sin^3t

\displaystyle\frac{dy}{dt}=3\;cos\;t-6\;sin^2t(cos\;t)

\displaystyle\frac{dy}{dt}=3\;cos\;t(1-2\;sin^2t)

\displaystyle\frac{dy}{dt}=3\;cos\;t(1-2\;sin^2t)

\text{Using }\boxed{\bf\,cos2A=1-2\;sin^2A}

\displaystyle\frac{dy}{dt}=3\;cos\;t\;cos2t

\text{Now}

\displaystyle\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}

\displaystyle\frac{dy}{dx}=\frac{3\;cos\;t\;cos2t}{3\;sin\;t\;cos2t}

\displaystyle\frac{dy}{dx}=\frac{cos\;t}{sin\;t}

\displaystyle\frac{dy}{dx}=cot\;t

\text{Then,}

\displaystyle\frac{d^2y}{dx^2}=-cosec^2\;t\;\frac{dt}{dx}

\displaystyle\frac{d^2y}{dx^2}=\frac{-cosec^2\;t}{3\;sin\;t\;cos2t}

\implies\bf\frac{d^2y}{dx^2}=\frac{-1}{3\;sin^3t\;cos2t}

Similar questions