Math, asked by ammu3403, 11 months ago

Find d/dx tan⁻¹ √1+x²-1/x, x ∈ R - {0}

Answers

Answered by MaheswariS
0

Answer:

\bf\frac{dy}{dx}=\frac{1}{2(1+x^2)}

Step-by-step explanation:

Find d/dx tan⁻¹ √1+x²-1/x, x ∈ R - {0}

I have applied substituition method to solve this problem

\text{Let y=}tan^{-1}(\frac{\sqrt{1+x^2}-1}{x})

\text{take x=}tan\theta

\implies\:\theta=tan^{-1}x

y=tan^{-1}(\frac{\sqrt{1+tan^2\theta}-1}{tan\theta})

y=tan^{-1}(\frac{\sqrt{sec^2\theta}-1}{tan\theta})

y=tan^{-1}(\frac{sec\theta-1}{tan\theta})

y=tan^{-1}(\frac{\frac{1}{cos\theta}-1}{\frac{sin\theta}{cos\theta}})

y=tan^{-1}(\frac{\frac{1-cos\theta}{cos\theta}}{\frac{sin\theta}{cos\theta}})

y=tan^{-1}(\frac{1-cos\theta}{sin\theta})

using

\boxed{1-cosA=2\:sin^2\frac{A}{2}\:\text{ and }sinA=2\:sin\frac{A}{2}\:cos\frac{A}{2}}

y=tan^{-1}(\frac{2\:sin^2\frac{\theta}{2}}{2\:sin\frac{\theta}{2}\:cos\frac{\theta}{2}})

y=tan^{-1}(\frac{sin\frac{\theta}{2}}{cos\frac{\theta}{2}})

y=tan^{-1}(tan\frac{\theta}{2})

y=\frac{\theta}{2}

y=\frac{1}{2}\theta

y=\frac{1}{2}\:tan^{-1}x

Differentiate with respect to x

\frac{dy}{dx}=\frac{1}{2}\:(\frac{1}{1+x^2})

\implies\boxed{\bf\frac{dy}{dx}=\frac{1}{2(1+x^2)}}

Similar questions