Math, asked by binkleluthra, 4 months ago

find derivative of 1/(root x+1)-(rootx-1)​

Answers

Answered by mathdude500
5

Formula Used :-

\boxed{ \red{ \bf \:  \dfrac{d}{dx} \sqrt{x} = \dfrac{1}{2 \sqrt{x} }}}

\boxed{ \red{ \bf \: \dfrac{d}{dx} x = 1}}

\boxed{ \red{ \bf \: \dfrac{d}{dx}k = 0}}

Solution :-

\rm :\longmapsto\:Let \: y \:  =  \: \dfrac{1}{ \sqrt{x + 1} -  \sqrt{x - 1}  }

On rationalizing the denominator, we get

\rm :\longmapsto\:y=\dfrac{1}{ \sqrt{x + 1} -  \sqrt{x - 1}} \times \dfrac{\sqrt{x + 1} + \sqrt{x - 1}}{\sqrt{x + 1} + \sqrt{x - 1}}

\rm :\longmapsto\:y = \dfrac{\sqrt{x + 1} + \sqrt{x - 1}}{ {\bigg( \sqrt{x + 1}  \bigg) }^{2} -   {\bigg( \sqrt{x - 1}  \bigg) }^{2} }

\rm :\longmapsto\:y  = \dfrac{\sqrt{x + 1} + \sqrt{x - 1}}{x + 1 - x + 1}

\rm :\longmapsto\:y = \dfrac{\sqrt{x + 1} + \sqrt{x - 1}}{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y  =\dfrac{d}{dx}  \:  \dfrac{\sqrt{x + 1} + \sqrt{x - 1}}{2}

\rm :\longmapsto\:\dfrac{dy}{dx}  = \dfrac{1}{2} \bigg(\dfrac{d}{dx}  \sqrt{x + 1} + \dfrac{d}{dx}  \sqrt{x - 1}   \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{2}\bigg(\dfrac{1}{2 \sqrt{x + 1} } - \dfrac{1}{2 \sqrt{x - 1} }   \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{4}\bigg(\dfrac{1}{\sqrt{x + 1} } - \dfrac{1}{\sqrt{x - 1} }   \bigg)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{4}\bigg(\dfrac{ \sqrt{x - 1} -  \sqrt{x + 1}  }{\sqrt{ {x}^{2} - 1} } \bigg)

Additional Information :-

\boxed{ \green{ \bf \: \dfrac{d}{dx}sinx = cosx}}

\boxed{ \green{ \bf \: \dfrac{d}{dx}cosx =  - sinx}}

\boxed{ \green{ \bf \: \dfrac{d}{dx}cosecx =  - cotx \: cosecx}}

\boxed{ \green{ \bf \: \dfrac{d}{dx}secx =   tanx \: secx}}

\boxed{ \green{ \bf \: \dfrac{d}{dx} tanx =  {sec}^{2}x}}

\boxed{ \green{ \bf \: \dfrac{d}{dx} cotx =   -  \: {cosec}^{2}x}}

Similar questions