Math, asked by guru6761, 1 year ago

Find derivative of 1-tanx/1+tanx w.r.t.x.

Attachments:

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{\dfrac{1-tan\,x}{1+tan\,x}}

\underline{\textbf{To find:}}

\textsf{Derivative of}\;\mathsf{\dfrac{1-tan\,x}{1+tan\,x}}

\underline{\textbf{Solution:}}

\underline{\textbf{Quotient rule of differentiation:}}

\boxed{\mathsf{\dfrac{d\left(\dfrac{u}{v}\right)}{dx}=\dfrac{v\,\dfrac{du}{dx}-u\,\dfrac{dv}{dx}}{v^2}}}

\mathsf{Let\;y=\dfrac{1-tan\,x}{1+tan\,x}}

\textsf{Differentiate with respect to 'x' by quotient rule}

\mathsf{\dfrac{dy}{dx}=\dfrac{(1+tanx)\dfrac{d(1-tanx)}{dx}-(1-tanx)\dfrac{d(1+tanx)}{dx}}{(1+tanx)^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{(1+tanx)(-sec^2x)-(1-tanx)(sec^2x)}{(1+tanx)^2}}

\mathsf{\dfrac{dy}{dx}=\dfrac{-sec^2x-tanx\,sec^2x-sec^2x+tanx\,sec^2x}{(1+tanx)^2}}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=\dfrac{-2sec^2x}{(1+tanx)^2}}}

Similar questions