find derivative of sinmX cos NX
Attachments:

Answers
Answered by
83
we know,
y = f(x).g(x) then,
dy/dx = f(x).dg(x)/dx + g(x).df(x)/dx
y = sin^m x.cosⁿx
differentiate with respect to x
dy/dx = sin^mx . {n.cos^(n-1)x (-sinx)} + cosⁿx { m.sin^(m -1)x (cosx) }
= - n.sin^(m+1)x .cos^(n-1)x +m.cos^(n+1)x.sin^(m-1)x
y = f(x).g(x) then,
dy/dx = f(x).dg(x)/dx + g(x).df(x)/dx
y = sin^m x.cosⁿx
differentiate with respect to x
dy/dx = sin^mx . {n.cos^(n-1)x (-sinx)} + cosⁿx { m.sin^(m -1)x (cosx) }
= - n.sin^(m+1)x .cos^(n-1)x +m.cos^(n+1)x.sin^(m-1)x
Similar questions