find derivative of:
using quotient rule..
Answers
Step-by-step explanation:
Given that,
y=\dfrac{x^5-\cos x}{\sin x}y=
sinx
x
5
−cosx
From this, we get,
\begin{gathered}\rightarrow\ f(x)=x^5-\cos x\\ \\ \rightarrow\ g(x)=\sin x\end{gathered}
→ f(x)=x
5
−cosx
→ g(x)=sinx
Now we find f'(x) and g'(x).
\begin{gathered}\rightarrow\ f'(x)=5x^4+\sin x\\ \\ \rightarrow\ g'(x)=\cos x\end{gathered}
→ f
′
(x)=5x
4
+sinx
→ g
′
(x)=cosx
So,
\begin{gathered}\begin{aligned}y'&=\ \ \frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}\\ \\ y'&=\ \ \frac{\sin x(5x^4+\sin x)-(x^5-\cos x)\cos x}{\sin^2x}\\ \\ y'&=\ \ \frac{5x^4\sin x+\sin^2x-x^5\cos x+\cos^2x}{\sin^2x}\\ \\ \\ \Large \text{$y'$}&=\ \ \Large \text{$\frac{-x^5\cos x+5x^4\sin x+1}{\sin^2x}$}\end{aligned}\end{gathered}
y
′
y
′
y
′
y
′
=
(g(x))
2
g(x)f
′
(x)−f(x)g
′
(x)
=
sin
2
x
sinx(5x
4
+sinx)−(x
5
−cosx)cosx
=
sin
2
x
5x
4
sinx+sin
2
x−x
5
cosx+cos
2
x
=
sin
2
x
−x
5
cosx+5x
4
sinx+1
Hence, Derived
answer is 6 / 2 is correct answer