Math, asked by sekhonjagseer78, 1 month ago

find derivative of
tan^{ - 1} (x \  \sqrt{a}^{2} - x {}^{2} )
differentiate with respect to x​

Answers

Answered by MathCracker
66

Correct Question :-

find derivative of \rm{ \tan {}^{ - 1}  \frac{x}{ \sqrt{a {}^{2}  - x {}^{2} } }  } \\ differentiate with respect to x.

Solution :-

Let,

 \rm{y =  \tan {}^{ - 1}  \frac{x}{ \sqrt{a {}^{2} - x {}^{2}  } }  } \\

 \rm{x = a  \sin \theta }

Then,

  \rm{ \therefore \theta =  \sin {}^{ - 1}   \frac{x}{a} \:  \:  \: \:  \:   -  -  -  -  - (1) } \\

Now,

 \rm{y =  \tan {}^{ - 1}  \frac{a \sin \theta }{ \sqrt{a {}^{2}  - a {}^{2} \sin {}^{2} \theta  } }  } \\

It becomes,

 \rm :  \longmapsto{ \tan {}^ {- 1} \frac{a \sin \theta }{ \sqrt{a {}^{2} \cos {}^{2} \theta   } }  } \\

 \rm :  \longmapsto{ \tan {}^{ - 1} \frac{a \sin \theta }{a \cos \theta }   } \\

 \rm :  \longmapsto{ \tan {}^{ - 1}  \tan \theta  \:  \: \bigg\{  \because \frac{ \sin \theta }{ \cos \theta } =  \tan \theta \bigg\}  } \\

Now, it becomes

 \rm{ y =  \theta}

  \rm :  \longmapsto{y =  \theta =  \sin {}^{ - 1}  \frac{x}{a}   \:   \:  \:  \: \{by \:  \:  \:  - (1) \}} \\

Differentiate with respect to x

 \rm :  \longmapsto{ \frac{d}{dx}y =  \frac{d}{dx} \sin {}^{ - 1} \frac{x}{a}     } \\

 \rm :  \longmapsto{ \frac{1}{a} \times  \frac{1}{ \sqrt{1 -  \frac{x {}^{2} }{a {}^{2} } } }  } \\

 \rm :  \longmapsto{ \frac{1}{a} \times  \frac{a}{ \sqrt{a {}^{2} - x {}^{2}  } }  =  \frac{1}{ \sqrt{a {}^{2}  - x {}^{2} } }  } \\

Hence,

{\boxed{\rm{\red{ \frac{d}{dx}  \tan {}^{ - 1}  \frac{x}{ \sqrt{a {}^{2} - x {}^{2}   }  }  =  \frac{1}{ \sqrt{a {}^{2} - x {}^{2}  } }  }}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by IIMrVelvetII
6

Correction in the question :-

Find derivative of  \sf \fbox \red{{tan}^{ - 1}  \frac{x}{ \sqrt{ {a}^{2} } - \sqrt{ {x}^{2}}}} Differentiate with respect to \sf x.

SOLUTION :-

Let,

 \sf \fbox \orange{y = {tan}^{ - 1}  \frac{x}{ \sqrt{ {a}^{2} } - \sqrt{ {x}^{2}}}}

 \sf \fbox \orange{x = a \: sin  \: \theta}

Here,

 \sf \theta = {sin}^{ - 1} \frac{x}{a} ---------❶

Now,

 \sf y =  {tan}^{ - 1}  \frac{a \: sin  \: \theta}{ \sqrt{ {a}^{2} -  {a}^{2} {sin}^{2} \theta}}

On reducing it becomes,

 \sf {tan}^{ - 1} \frac{a \: sin  \: \theta}{ \sqrt{ {a}^{2} {cos}^{2} \theta} }

 \sf {tan}^{ - 1}  \frac{a \: sin \: \theta}{a \: cos \:  \theta}

 \sf  {tan}^{ - 1}tan \: \theta \: {\therefore \:  \frac{sin \: \theta}{cos \:  \theta} = tan \: \theta}

Now it becomes,

 \sf y =  \theta

 \sf y =  \theta = {sin}^{ - 1} \frac{x}{a} by ---------❶

Differentiate with respect to \sf x

  \sf \frac{d}{dx}y =  \frac{d}{dx} {sin}^{ - 1} \frac{x}{a}

 \sf  \frac{1}{a} \times  \frac{1}{ \sqrt{1 -  \frac{ {x}^{2} }{ {a}^{2} } } }

 \sf  \frac{1}{a} \times  \frac{a}{ \sqrt{ {a}^{2} -  {x}^{2}}} = \frac{1}{ \sqrt{ {a}^{2} -  {x}^{2}}}

Hence,

 \sf \fbox \green{\frac{d}{dx} {tan}^{ - 1} \frac{x}{ \sqrt{ {a}^{2} -  {x}^{2}}} =  \frac{1}{ \sqrt{ {a}^{2} -  {x}^{2}}}}

Hence Proved.

Hope it helps ✌

\fbox \orange{ \sf @IIMrVelvetII}

\fbox \green{ \sf Thank You!!!}

Similar questions