Math, asked by djprajapati1373, 3 months ago

Find derivative of
 {x}^{y} *  {y}^{x}  = 12

Answers

Answered by mathdude500
2

\large\underline{\sf{Formula \:  Used-}}

 \bf \: \dfrac{d}{dx} x = 1

 \bf \: \dfrac{d}{dx}  {e}^{x}  =  {e}^{x}

 \bf \: \dfrac{d}{dx} logx = \dfrac{1}{x}

 \bf \: \dfrac{d}{dx} u.v = v \: \dfrac{d}{dx} u \:  +  \: u \: \dfrac{d}{dx} v

 \bf \:  {x}^{y}  =  {e}^{y \: logx}

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: {x}^{y}  +  {y}^{x}  = 12

\rm :\longmapsto\: {e}^{ylogx}  +  {e}^{xlogy}  = 12

On differentiating w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}( {e}^{ylogx}  +  {e}^{xlogy})  =\dfrac{d}{dx}  12

\rm :\longmapsto\: {e}^{ylogx} \dfrac{d}{dx} (ylogx) +  {e}^{xlogy} \dfrac{d}{dx} (xlogy) = 0

\rm :\longmapsto\: {e}^{ylogx} (y\dfrac{d}{dx} logx + logx\dfrac{d}{dx} y) +  {e}^{xlogy} (x\dfrac{d}{dx} logy + logy\dfrac{d}{dx} x) = 0

\rm :\longmapsto\: \sf \:  {x}^{y}  \bigg(\dfrac{y}{x}  + logx\dfrac{dy}{dx} \bigg)  +  {y}^{x}\bigg(\dfrac{x}{y}\dfrac{dy}{dx} + logy   \bigg)   = 0

\rm :\longmapsto\: y{x}^{y - 1}  +  {x}^{y} logy\dfrac{dy}{dx}  +  {xy}^{x - 1} \dfrac{dy}{dx}  +  {y}^{x} logy = 0

\rm :\longmapsto\: {x}^{y} logy\dfrac{dy}{dx}  +  {xy}^{x - 1} \dfrac{dy}{dx}  =  -  {y}^{x} logy  - y{x}^{y - 1}

\rm :\longmapsto\: ({x}^{y} logy  +  {xy}^{x - 1}) \dfrac{dy}{dx}  =  - ( {y}^{x} logy   + y{x}^{y - 1} )

\rm :\longmapsto\: \dfrac{dy}{dx}  = \dfrac{ - ( {y}^{x} logy   + y{x}^{y - 1} )}{ ({x}^{y} logy  +  {xy}^{x - 1})}

\rm :\longmapsto\: \dfrac{dy}{dx}  = \dfrac{ - y( {y}^{x - 1} logy   + {x}^{y - 1} )}{x ({x}^{y - 1} logy  +  {y}^{x - 1})}

Similar questions