Math, asked by RonakNishad, 20 days ago

Find derivative of the following, using first principle:- (2x+3)²​

Answers

Answered by Anonymous
2

Given: f(x) + (2x + 3)²​

To find: The derivative of the given function w.r.t. x using first principles.

Solution:

By the definition of first principles, the derivative of a function is given by,

\rm f'(x) = \lim\limits_{h\to 0} \dfrac{f(x+h) - f(x)}{h}

So using this we have,

\rm f'(x) = \lim\limits_{h\to 0} \dfrac{(2(x+h) + 3)^2  - (2x+ 3)^2}{h}

\rm f'(x) = \lim\limits_{h\to 0} \dfrac{(2x+2h + 3)^2  - (2x+ 3)^2}{h}

{\rm f'(x) = \lim\limits_{h\to 0} \dfrac{(2x)^2 +(2h)^2 + (3)^2 + 2(2x\cdot2h + 2h\cdot3 + 2x \cdot3) - (4x^2 + 12x + 9)}{h}}

\rm f'(x) = \lim\limits_{h\to 0} \dfrac{4x^2 +4h^2 +9+ 8xh + 12h + 12x -4x^2 -12x -9}{h}

\rm f'(x) = \lim\limits_{h\to 0} \dfrac{4h^2 + 8xh + 12h}{h}

\rm f'(x) = \lim\limits_{h\to 0} \dfrac{h(4h + 8x+ 12)}{h}

\rm f'(x) = \lim\limits_{h\to 0} (4h + 8x+ 12)

\rm f'(x) = 4(0) + 8x+ 12

\rm f'(x) = 8x+ 12

Hence the derivative of the given function is 8x + 12.

Similar questions