Math, asked by shreya8739, 1 year ago

find derivative of the function:cot inverse(1+cosx/sinx)


shreya8739: hmexactly

Answers

Answered by Anonymous
8
here's the differentiation
Attachments:
Answered by mysticd
3

 \frac{d}{dx} cot^{-1} \Big( \frac{1+cos x}{sin x } \Big)

 = \frac{d}{dx} cot^{-1} \Big( \frac{2 cos ^{2} \frac{x}{2}}{2 sin \frac{x}{2} cos \frac{x}{2}  }\Big)

/* ___________________

 \pink { i ) 1 + Cos 2x = 2 cos^{2} x }

 \blue { ii ) sin 2x = 2 sin x cos x }

_________________ */

 = \frac{d}{dx} cot^{-1} \Big( \frac{cos  \frac{x}{2}}{ sin \frac{x}{2}   }\Big)

 = \frac{d}{dx} cot^{-1} \Big( cot \frac{x}{2}\Big)

 = \frac{d}{dx} \big(\frac{x}{2}\big) \\= \frac{1}{2}

Therefore.,

 \red { Value \:of \:\frac{d}{dx} cot^{-1} \Big( \frac{1+cos x}{sin x }\Big)}

\green {= \frac{1}{2}}

•••♪

Similar questions