Math, asked by Punam5221, 23 hours ago

Find differential equation of all parabolas x^2=4a(y+k) .

Answers

Answered by XxitzZBrainlyStarxX
6

Question:-

Find differential equation of all parabolas

x² = 4a(y + k).

Given:-

  • Equation of parabolas x² = 4a(y + k).

To Find:-

  • Differential equation.

Solution:-

Equation of parabolas is x² = 4a(y + k).

Differentiate w.r.t.x we get,

 \sf \large \Rightarrow2x  = 4a  \:  \frac{dy}{dx}

 \sf \large x = 2a \:  \frac{dy}{dx}  \\   \sf \large\therefore \frac{1}{2a}  =  \frac{1}{x}  \:  \frac{dy}{dx}

Again differentiate w.r.t.x we get,

 \sf \large \frac{d}{dx} ( \frac{1}{x} . \frac{dy}{dx} ) =  \frac{d}{dx} ( \frac{1}{2a} )

 \sf \large \Rightarrow \frac{1}{x} . \frac{d {}^{2}y }{d x{}^{2} } +  \frac{dy}{dx} .(  - \frac{1}{x {}^{2} } ) = 0

 \sf \large \Rightarrow x \frac{d {}^{2}y }{dx {}^{2} }  -  \frac{dy}{dx}  = 0

Answer:-

{ \boxed{ \sf \large \pink{Hence, \:  Differentiate  \: equation \:  is  \: x \frac{d {}^{2}y }{dx {}^{2} } = 0.  } }}

Similar questions